Coenzyme Q10: Who needs it?

Geneva Clark Briggs, PharmD, BCPS

Coenzyme Q10

- Available in more than 100 single-ingredient and combination-ingredient products
- Greater than $200 million in sales/year

Coenzyme Q10

- Other names: ubiquinone, ubidecarenone, coenzyme Q
- A fat soluble benzoquinone produced in mitochondria (heart, liver, kidney and pancreas)

Coenzyme Q10

- Component of the mitochondrial electron transport chain

NADH, nicotinamide adenine dinucleotide; Q, CoQ10; Cytochrome C, Fe-S, iron-sulfur clusters; ADP, adenosine diphosphate; ATP, adenosine triphosphate.
Coenzyme Q10: Who needs it?

Coenzyme Q10

- Two forms - ubiquinone and ubiquinol
- Reduced form, ubiquinol, inhibits protein and DNA oxidation and lipid peroxidation
- Only lipid soluble antioxidant synthesized endogenously

Some Purported Indications for CoQ10

- Familial CoQ10 deficiencies
- Statin induced myopathy
- Heart failure
- Hypertension
- Parkinson’s disease

Clinical Syndromes of CoQ10 Deficiency

- Inherited metabolic muscle and mitochondrial diseases
 - Myopathy with recurrent myoglobinuria and CNS involvement
 - Cerebellar ataxia with variable CNS involvement
 - Isolated myopathy
 - Mitochondrial encephalomyopathy

Clinical Syndromes of CoQ10 Deficiency

- Supplementation may reduce symptoms
- May require high doses and 6 months or more of therapy to improve symptoms
- UbiQGel - FDA orphan drug status for treating mitochondrial encephalomyopathies
Coenzyme Q10: Who needs it?

Prevention/Treatment of Statin Induced Myalgia

Biosynthetic Pathway

Tyrosine or Phenylalanine → 4OH-Benzoate → Decaprenyl-PP → Ubiquinone

Acetyl-CoA → HMG-CoA → HMG-CoA reductase → Mevalonate → Farnesyl-PP → Squalene → Cholesterol

AHA/ACC/NHLBI Definitions

- myopathy - any disease of muscle
- myalgia - focal or diffuse muscle aches or weakness with no elevation of creatine kinase
- myositis - muscle pain with a systemic inflammatory response and elevated creatine kinase more than 3× ULN
- rhabdomyolysis - severe muscle damage with damage to another organ, notably the kidneys, myoglobinuria and creatine kinase more than 10× ULN

Am J Cardiol 2006; 97:89-94

Indirect Support for CoQ10 Theory

- Familial CoQ10 deficiency
 - severe causes mitochondrial myopathic changes with exercise intolerance and recurrent myoglobinuria.
 - Less severe is associated cerebellar ataxia, muscle weakness.

Proc Natl Acad Sci U S A 1989;86:2379-2382,
Neurology 1997;48:1238-1243,
Coenzyme Q10: Who needs it?

Do statins decrease CoQ10?

- Some small studies do show ↓ plasma levels with treatment
- Other studies show no change in CoQ10 levels

Lipid Corrected CoQ10 Levels

- CoQ10 is carried in blood by lipoproteins
- When plasma levels are corrected for lipid values on statins - no change in CoQ10 levels

Studies of CoQ10 in Myalgia

<table>
<thead>
<tr>
<th>Study population</th>
<th>Study Design</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 patients with statin induced myopathy, elevated CK levels</td>
<td>Prospective, 25 control muscle biopsy samples</td>
<td>Muscle structure was normal in 14, showed evidence of mitochondrial dysfunction and nonspecific myopathic changes in 2 patients. Muscle CoQ10 concentration not statistically different between patients and control subjects. Muscle CoQ10 was normal in 4, < normal in 10, > normal in 4.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study population</th>
<th>Study Design</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>44 patients with myalgia on statins, CoQ10 200 mg/day or placebo, 12 weeks, simvastatin titrated to 40 mg/day, reduced dose or stopped therapy if myalgia developed</td>
<td>Randomized, placebo controlled</td>
<td>16 of 22 [73%] CoQ10 tolerated 40 mg/day vs 13 of 22 [59%] with placebo, p = 0.34 16 of 22 [73%] CoQ10 stayed on therapy vs 18 of 22 [82%] with placebo, p = 0.47</td>
</tr>
</tbody>
</table>

Am J Cardiol 2007;100:1400-3.
Coenzyme Q10: Who needs it?

Studies of CoQ10 in Myopathy

<table>
<thead>
<tr>
<th>Study population</th>
<th>Study Design</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with myopathic symptoms secondary to statin, CoQ10 (100 mg/day, n = 18) or vitamin E (400 IU/day, n = 14) for 30 days</td>
<td>Randomized, double-blind</td>
<td>Pain severity ↓ 40% (p <0.001) and pain interference with daily activities ↓ 38% (p <0.02) in CoQ10 group. No changes in pain severity (+9%, p = NS) or pain interference with daily activities (-11%, p = NS) in vitamin E group.</td>
</tr>
</tbody>
</table>

Am J Cardiol 2007;99:1409-12.

What we don’t know for sure ...

- Do plasma levels of CoQ10 need to be corrected for lipid levels?
- Do lower circulating CoQ10 levels reflect low mitochondrial levels?
- Do lower plasma levels have long term impact?

Genetic Risk Factors Associated with Statin Induced Myalgia

<table>
<thead>
<tr>
<th>Gene symbol</th>
<th>Polymorphism/variation</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP2C9 (multiply)</td>
<td>CYP2C9 3, 5</td>
<td>Reduced plasma levels</td>
</tr>
<tr>
<td>CYP2D6 (multiply)</td>
<td>CYP2D6 6, 8</td>
<td>Variations in serum creatinine kinase during therapy (36)</td>
</tr>
<tr>
<td>CYP2C19 (multiply)</td>
<td>CYP2C19 12, 12</td>
<td>Variations in serum creatinine kinase (37)</td>
</tr>
<tr>
<td>CYP11B1 (multiply)</td>
<td>CYP11B1 13, 13</td>
<td>Variations in serum creatinine kinase (38)</td>
</tr>
<tr>
<td>CYP7A1 (multiply)</td>
<td>CYP7A1 3, 3</td>
<td>Variations in serum creatinine kinase during therapy (39)</td>
</tr>
<tr>
<td>ABCB1 (multiply)</td>
<td>ABCB1 3435 C>A</td>
<td>Variations in serum creatinine kinase during therapy (40)</td>
</tr>
<tr>
<td>AKT3 (multiply)</td>
<td>AKT3 3067 G>T</td>
<td>Reduced compliance in CE carriers</td>
</tr>
<tr>
<td>LCHAD (multiply)</td>
<td>LCHAD 1344 G>C</td>
<td>Reduced compliance in CE carriers</td>
</tr>
</tbody>
</table>

Reviews of the Issue

- American College of Cardiology - “The value of coenzyme Q10 with statin use has not been clearly established.” J Am Coll Cardiol 2005;46:184-221.
Other Medications That May Lower CoQ10

- Glyburide, phenformin, and tolazamide
- Propranolol, metoprolol, and alprenolol
- Phenothiaxine antipsychotic
- Tricyclic antidepressants
- Methyldopa
- Hydrochlorothiazide
- Clonidine
- Hyrdralazine

BUT no evidence of AE from lowering or benefit of supplementation

CoQ10 and Heart Failure

COQ10 Mechanism of Action in Heart Failure

- Enhance cardiac contractility
 - essential cofactor for mitochondrial electron transport and myocardial energy supply
- Reduce endothelial dysfunction

Studies of CoQ10 in Heart Failure

- Approved for this use in Japan since 1974
- 5 double blind studies (~900 subjects) found ↓ symptoms
 - 1 found ↓ hospitalizations
- 2 found no benefits (~85 subjects)

Eur Heart J. 2006;27:2675-81.
Studies of CoQ10 in Heart Failure

- Low plasma levels have been shown to be an independent predictor of HF mortality
- 3.7% (95%CI 1.59-5.77) net improvement in the ejection fraction
- 0.28 L/minute (95%CI 0.03-0.53) average increase in cardiac output

Reviews of the Issue

- ACC - “The value of coenzyme Q10 in cardiovascular disease treatment has not been clearly established.”

Severe Heart Failure

- Case where ubiquinol should be used instead of ubiquinone
 - ubiquinone has very low bioavailability in severe heart failure (gut edema)
 - small study found improved serum levels

CoQ10 and Hypertension
COQ10 Mechanism of Action in Hypertension

- CoQ10 decreases cytoplasmic NADH levels and thereby diminishes the reductive power that drives superoxide synthesis in endothelium and vascular smooth muscle.

Hypertension

- Meta-analysis of 12 clinical trials (362 patients) concluded CoQ10 has the potential to lower systolic and diastolic blood pressure, without significant side effects.

Hypertension

- Systolic decrease - ~16 mm Hg
- Diastolic - ~10 mm Hg
- Reduction occurs gradually over months
- Effective dose varies widely
 - ~100-200 mg/day

CoQ10 and Parkinson’s Disease
Coenzyme Q10: Who needs it?

Possible Mechanism of Action in Parkinson’s Disease

- Patients with PD have reduced activity of complex I and II/III in the mitochondrial electron transport chain in mitochondria isolated from platelets and substantia nigra.
- Coenzyme Q10 is the electron acceptor for complexes I and II.

Parkinson’s Disease

- 2 positive/3 negative trials (n=140).
- 1,200 mg/day of CoQ10 slowed progressive deterioration of function [total Unified Parkinson Disease Rating Scale].
 - did not postpone the onset of symptomatic therapy or affect UPDRS motor score.

Possible Indications Lacking Data or Still Under Study

- Duchenne’s muscular dystrophy
- AIDS
- Periodontal disease
- Alzheimer’s disease
- Down’s syndrome
- Male infertility
- Migraine
- Diabetes
- Amyotrophic lateral sclerosis

General Issues with CoQ10

- No absolute contraindications
 - Little info on use during pregnancy and in kids.
- DI:
 - Case reports of ↑INR in combo with warfarin, study found no interaction
 - Possible mild decrease in BP and glucose.
- AE
 - GI upset, diarrhea.

References:

Arch Neurol. 2007;64:938-44.
Arch Neurol. 2007;59:1541-1550.
Coenzyme Q10: Who needs it?

© 2010 Pharmaceutical Education Consultants, Inc. unless otherwise noted. All rights reserved.
Reproduction in whole or in part without permission is prohibited.

General Issues with CoQ10

- Bioavailability
 - Varies significantly between individuals and products
 - Softgel capsule in oil and nanoparticulate appear to be best
 - Measure plasma levels to ensure absorption
 - Divided doses also appear better than one large dose

Dosage

<table>
<thead>
<tr>
<th>Condition</th>
<th>Most Common Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitochondrial cytopathies</td>
<td>150 mg/day or 2 mg per kg/day with titration, up to 3,000 mg/day in some patients</td>
</tr>
<tr>
<td>Parkinson’s disease</td>
<td>1,200 mg/day in four divided doses</td>
</tr>
<tr>
<td>Heart failure</td>
<td>50-300 mg/day</td>
</tr>
<tr>
<td>Hypertension</td>
<td>100-200 mg/day</td>
</tr>
<tr>
<td>With statins</td>
<td>? 60-300 mg/day</td>
</tr>
</tbody>
</table>

Consumer Lab Testing

- Example “passed” products
 - Nature Made® CoQ10 200 mg (200 mg per softgel, in oil)
 - Nature’s Bounty® Extra Strength Q-Sorb™ Co Q-10 (200 mg per softgel, in oil)
 - BioSolv® Advanced Formula Quinogel® 100 mg (100 mg per softsule, solubilized and in oil)
 - Vitamin World® Ubiquinol 100 mg (100 mg per rapid release softgel, in oil)

- Failed product
 - Healthy America CoQ10 (150 mg per softgel)

Dietary Sources of CoQ10

<table>
<thead>
<tr>
<th>Food Source</th>
<th>mcg/g</th>
<th>Food Source</th>
<th>mcg/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pork heart</td>
<td>126.8-203</td>
<td>Sesame oil</td>
<td>32.0</td>
</tr>
<tr>
<td>Reindeer</td>
<td>157.9</td>
<td>Soybeans</td>
<td>19 - 30.1</td>
</tr>
<tr>
<td>Beef heart</td>
<td>113.3</td>
<td>Peanuts, roasted</td>
<td>26.7</td>
</tr>
<tr>
<td>Soybean oil</td>
<td>92.3</td>
<td>Sesame seeds</td>
<td>23.0</td>
</tr>
<tr>
<td>Canola oil</td>
<td>63.5 - 73.4</td>
<td>Pork liver</td>
<td>22.7</td>
</tr>
<tr>
<td>Sardine</td>
<td>64.3</td>
<td>Chicken</td>
<td>14.0 - 21.0</td>
</tr>
<tr>
<td>Mackerel</td>
<td>43.3</td>
<td>Pistachios, roasted</td>
<td>20.1</td>
</tr>
<tr>
<td>Pork</td>
<td>24.3-41.1</td>
<td>Ham</td>
<td>20.0</td>
</tr>
<tr>
<td>Beef liver</td>
<td>39.2</td>
<td>Walnuts, raw</td>
<td>19.0</td>
</tr>
<tr>
<td>Beef</td>
<td>31.0 - 36.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

J Food Comp Analysis 2001;14:409-412
Coenzyme Q10: Who needs it?

CoQ10 Bottom Line
- Although touted for many indications, little consistent evidence for effectiveness
- May be of benefit in
 - Familial CoQ10 deficiencies
 - Hypertension
 - Parkinson’s disease
 - Heart failure
- Appears to be safe

Also Found in Many Other Products