Diabetes: The Basics

Objectives

- Describe the diagnostic criteria for diabetes
- Identify patient characteristics and attributes that increase risk for diabetes
- Describe the societal importance of diabetes and diabetes risk factors
- Discuss the co-morbidities and complications of diabetes

Diabetes

- Metabolic disorders of fuel homeostasis
 - Characterized by:
 - Hyperglycemia
 - Altered lipid metabolism
 - Caused by:
 - Inadequate (or no) insulin secretion and/or
 - Defects in insulin action
 - Results in:
 - Hyperglycemia
 - Chronic complications
Symptoms of Hyperglycemia

- Increased thirst (polydipsia)
- Increased urination (polyuria)
- Increased appetite (polyphagia)
- Weight loss
- Unexplained fatigue
- Sexual dysfunction
- Frequent infections – esp. UTI, skin
- Numbness/tingling – esp. in feet
- Delayed or lack of wound healing

Signs of Hyperglycemia

- Elevated blood glucose
- Glucose in the urine
- Acanthosis nigricans
 - Darker, thick velvety skin in body folds and creases
 - Associated with hyperinsulinemia
 - Insulin deposition in skin leads to hyperplasia

Diagnosis

Pre-diabetes
- Impaired Fasting Glucose (IFG)
 - FBG = 100-125 mg/dL
- Impaired Glucose Tolerance (IGT)
 - 2-hr OGTT = 140-199 mg/dL
- Hemoglobin A1C = 5.7-6.4%

Diabetes – Non-pregnant adults and children
- Fasting blood glucose ≥ 126 mg/dL OR
- Symptoms of diabetes with random BG ≥ 200 mg/dL OR
- 75 gm OGTT with a 2 hr glucose ≥ 200 mg/dL
- Hemoglobin A1C ≥ 6.5%
- All positive values should be confirmed.
Societal Importance of Diabetes

- Population – 26.5 million with diabetes, 75% are diagnosed
- 8.2% of total US population, 25% of people age 60 or older
- 1.6 million new cases diagnosed in people age 20 or older in 2006
- Direct and indirect costs of care and treatment of diabetes in 2007: – 174 BILLION dollars

Main Classifications

- Type 1
 - Also called IDDM, Type I, or juvenile onset
- Type 2
 - Also called NIDDM, Type II, or adult onset
- Gestational diabetes
 - Also called GDM

Other Causes of Diabetes

- Genetic defects
 - Beta cell function
 - Insulin action
- Secondary Causes
 - Endocrine disorders
 - Pancreatic disorders
- Medications
 - Glucocorticoids (including inhaled), niacin, phenytoin, pentamidine, thyroid hormones, sympathomimetics, protease inhibitors, diazoxide, α-interferon, atypical antipsychotics, GnRH agonists, thiazide diuretics (?)
Physiology Review

- Pancreas
 - Beta cells (Islets of Langerhans)
 - Produce insulin and amylin
 - Insulin stored with C-peptide and co-secreted
 - Alpha cells
 - Regulate glucagon secretion (hepatic glucose output)

Physiology – Insulin Secretion

- Stimulated by glucose > 70 mg/dL
 - In fasting state
 - Small bursts of insulin every 10 minutes
 - Greater bursts every 80-150 minutes
 - Meals/Major stimuli
 - Incretin release leads to large (4-5x baseline) burst that lasts for 2-3 hours
 - First Phase Insulin Release – suppresses glucagon, regulates gastric emptying
 - Second phase insulin release

Physiology – Glucose Homeostasis

- Fasting State – low insulin
 - 75% glucose disposal - NON-insulin dependent tissues
 - Glucose levels maintained by:
 - Counter-regulatory hormones – glucagon, GH, epi
 - Glucagon – prevents hypoglycemia, restores normoglycemia
 - Promote
 - Hepatic gluconeogenesis and glycogenolysis (85% of glucose)
 - glucose transporters on cell surfaces
 - Lipolysis – FFA release
 - Stimulates hepatic glucose output
 - Suppresses glucose uptake

- Non-fasting or Post-meal – high insulin
 - CHO intake
 - glucose
 - β-cell insulin
 - Increased insulin leads to:
 - Suppression of hepatic glucose production
 - Glucagon release from alpha cells inhibited
 - Stimulation of peripheral tissue glucose uptake
 - Binds receptor target sites:
 - glucose transporters on cell surfaces
 - Inhibition of lipolysis in adipocytes
 - Lowers hepatic glucose
 - Increases glucose uptake
 - Anabolic processes – glycogen, protein, lipid synthesis
 - Gene regulation
Physiology – Glucose Homeostasis

- **Non-fasting**
 - Glucose utilization
 - 80-85% of glucose taken up by muscles
 - 4-5% of glucose taken up by adipocytes
 - Amylin – co-secreted with insulin in response to food intake
 - Regulates rate of systemic glucose appearance
 - Slows gastric emptying
 - Suppresses glucagon
 - Induces satiety/Reduces food intake

- **Incretins (GLP-1, GIP)**
 - GLP = glucagon-like peptide
 - GIP = glucose-dependent insulinotropic polypeptide
 - Secreted by gut with food intake and glucose > 90 mg/dL
 - Provide incretin effect
 - Signal β-cells to release insulin
 - Suppress glucagon release
 - Slow gastric emptying
 - Increase satiety/Reduce food intake
 - Rapidly inactivated by DPP-4 (dipeptidyl-peptidase)

Pathophysiology of Diabetes

- **What goes wrong?**
 - Genetic predisposition
 - External environmental stimuli
 - Trigger autoimmunity to β-cells
 - Leads to β-cell destruction
 - Timeline
 - Protracted preclinical period with (+) immune markers and β-cell destruction
 - Hyperglycemia when 80-90% of β-cells destroyed (Lose insulin and amylin)
 - Transient remission “honeymoon phase”
 - Type 1 diabetes
Pathophysiology – Type 1

- Clinical Course
 - Younger patients – rapid β-cell destruction and presentation with ketoacidosis
 - Young adults – can maintain insulin secretion to prevent ketoacidosis for years
- Latent Autoimmune Diabetes in Adults (LADA)
 - Type 1, but diagnosed at a later age (>30 yo)
 - 14-33% of patients originally diagnosed with Type 2
 - Have immune markers for Type 1
 - Characterized by early failure of oral agents and insulin dependence
- Idiopathic diabetes – No known etiology, No evidence of autoimmunity

Pathophysiology – Type 2

- Usually no identifiable cause
- Risk Factors
 - Family History
 - Overweight/Obesity (BMI ≥ 25)
 - Physical Inactivity
 - Race (Native Americans, Latinos, Asian Americans, African Americans, Pacific Islanders)
 - IGT or IFG
 - Hypertension (>140/90)
 - HDL ≤ 35 mg/dL
 - TG ≥ 250 mg/dL
 - Hx of GDM or baby ≥ 9 lbs.
 - Hx of vascular disease
 - Polycystic ovary disease
 - Acanthosis nigricans

- Insulin resistance with inadequate compensatory increase insulin secretion
- Insulin resistance
 - Dysfunctional glucose utilization at muscle
 - Glucose output from liver not properly inhibited
 - FFA release from adipocytes not properly inhibited
- Defects in insulin secretion
 - At diagnosis
 - 50% reduction in β-cell function, decline continues
 - Abnormal insulin response to hyperglycemia
 - Insufficient amylin secretion
 - Blunted incretin response (GLP-1)
 - Loss of first-phase insulin secretion (no glucagon inhibition)
Pathophysiology – Type 2

- Sites of insulin resistance
 - Peripheral skeletal muscle – PRIMARY
 - Onset of insulin action is delayed
 - Decreased ability to stimulate glucose uptake
 - Leads to ↑ postprandial BG
 - Insufficient glycogen storage
 - Liver
 - More insulin needed to suppress glucose output from glucagon action ➔ increased hepatic output during the fed state
 - Increased glucose production during fasting state leads to ↑ fasting BG

- Adipocyte
 - Need more insulin to inhibit lipolysis in the fed state ➔ increased FFAs
 - Sustained, increased FFAs worsen insulin resistance AND impair insulin secretion
 - FFAs stored as TGs in adipocytes, muscle, and liver
 - Increased fat stores
 - Visceral adipose tissue (VAT) vs. subcutaneous adipose tissue
 - VAT correlated with IR and ↓ rate of lipolysis and FFAs

Pathophysiology – Type 2

- Timeline
 - Extended preclinical period
 - Insulin resistance, hyperinsulinemia, normoglycemia
 - As fasting BG increases from 80-140 mg/dL, insulin concentrations are 2-2.5X normal
 - When fasting BG exceeds 140 mg/dL, β cells cannot maintain insulin secretion
 - Decreased β cell function and insulin secretory defects lead to drop in insulin concentrations
 - Inability to suppress hepatic glucose output and lipolysis ➔ elevated BG
 - Type 2 Diabetes
Microvascular complications

- Pathologic features similar in:
 - Retina
 - Renal glomerulus
 - Vasa nervorum
- Chronic hyperglycemia is initiating factor
- Complications result from:
 - Excessive protein glycation – proportional to glycemic level
 - Advanced glycosylation end-products (AGEs)
 - Stimulate oxidative reactions, resistant to natural degradation, cause structural damage
 - Activation of oxidative stress
 - Enhanced polyol pathway and protein kinase C activation
 - Osmotic cell injury, decreased antioxidant activity
 - Increased growth factor – thickening of basement membrane
 - Increased cell proliferation and vascular permeability
- Results in:
 - Abnormalities in blood flow and vascular permeability
 - Increased pressure and endothelial dysfunction
 - Microvasculature with thicker walls and narrowed lumens
 - Eventual cell death/apoptosis
 - Leads to further damage

Macrovascular complications

- Rapidly progressive and extensive CV disease with diabetes
 - CV risk present before development of hyperglycemia
- Most likely due to insulin resistance
 - Increased FFAs due to insulin resistance in adipocytes
 - Hyperglycemia – is risk factor; resolving hyperglycemia not shown to prevent CV disease
- Timeline
 - Endothelial dysfunction
 - LDL-C infiltrates subendothelial space
 - Formation of oxidized LDL-C
 - Macrophages take up oxidized LDL-C → foam cells
 - Foam cells accumulate → fatty streak → lesion
- Fasting / Pre-prandial
 - ADA Goal = 70 – 130 mg/dL
- 1-2 hrs. Post-prandial
 - ADA Goal = < 180 mg/dL

Glucose Monitoring

- Urine glucose – Very limited usefulness
 - Variable renal glucose thresholds – usually about 180 mg/dL
 - Poor correlation with blood glucose
 - Results do not indicate severity

PharmCon is accredited by the Accreditation Council for Pharmacy Education as a provider of continuing education.
Hemoglobin A1C

- Reflects mean glucose for 2-3 months
- Direct relationship to microvascular complications
- Monitor initially, then every 3-6 months
- Goal < 7%, individual pt. factors considered

Fructosamine

- Measure of glycated serum proteins
- Reflects glucose control over 2-3 weeks
- Useful when unexpected HbA1C
- Not shown to be related to diabetes complications
- Not equivalent to HbA1C
- Fructosamine – HbA1C comparison
 \[317 \mu mol = 7\%, 375 = 8, 435 = 9, 494 = 10 \]

Ketones

- Recommended for Type 1 DM and pregnancy with DM
- Measured in urine or special glucose meters
- Results can be negative or small, moderate, or large amounts of ketones present
- Measure at times when at risk for DKA

C-peptide

- Amino acid released with insulin from β cells
- Indirect measure of insulin secretion
- Normal value – 0.17 – 0.83 μmol/L
- Uses
 - Distinguish between Type 1 and 2 DM
 - Determine need for insulin with Type 2 DM
Glycemic Goals - Summary

- Primary target = HbA1C
- HbA1C goals individualized based on:
 - Duration of DM
 - Age / Life expectancy
 - Co-morbid conditions
 - Hypoglycemic unawareness
- Self-monitored blood glucose
 - Target meeting fasting goals first
 - Target meeting post-prandial if HbA1C goal not met with fasting goals met

American Diabetes Association Goal

<table>
<thead>
<tr>
<th></th>
<th>Fasting/pre-prandial BG</th>
<th>Post-prandial BG – 1-2hr</th>
<th>HbA1c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>70 – 130</td>
<td>< 180</td>
<td>< 7%</td>
</tr>
</tbody>
</table>

QUESTIONS?

Be sure to join us for the additional parts of this series.